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Abstract Global climate models suffer from a persistent shortcoming in their7

simulation of rainfall by producing too much drizzle and too little intense rain.8

This erroneous distribution of rainfall is a result of deficiencies in the represen-9

tation of underlying processes of rainfall formation. In the real world, clouds are10

precursors to rainfall and the distribution of clouds is intimately linked to the11

rainfall over the area. This study examines the model representation of tropical12

rainfall using the cloud regime concept. In observations, these cloud regimes are13

derived from cluster analysis of joint-histograms of cloud properties retrieved from14

passive satellite measurements. With the implementation of satellite simulators,15

comparable cloud regimes can be defined in models. This enables us to contrast16

the rainfall distributions of cloud regimes in 11 CMIP5 models to observations17

and decompose the rainfall errors by cloud regimes. Many models underestimate18

the rainfall from the organized convective cloud regime, which in observation pro-19

vides half of the total rain in the tropics. Furthermore, these rainfall errors are20

relatively independent of the model’s accuracy in representing this cloud regime.21

Error decomposition reveals that the biases are compensated in some models by a22

more frequent occurrence of the cloud regime and most models exhibit substantial23

cancellation of rainfall errors from different regimes and regions. Therefore, un-24

derlying relatively accurate total rainfall in models are significant cancellation of25

rainfall errors from different cloud types and regions. The fact that a good repre-26
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sentation of clouds does not lead to appreciable improvement in rainfall suggests27

a certain disconnect in the cloud-precipitation processes of global climate models.28

Keywords cloud regimes · model evaluation · model rainfall · tropics · CMIP5 ·29

CFMIP2 · ISCCP30

1 Introduction31

Accurate projections of rainfall are vital to society in a changing climate for pur-32

poses ranging from monitoring flood hazards to managing water resources. How-33

ever, this is hindered by longstanding errors in global climate models. These errors34

include the persistent underestimation of heavy rain (e.g., Dai 2006; Sun et al 2006;35

Stephens et al 2010), incorrect timing in the diurnal cycle (e.g., Yuan et al 2013),36

and poor simulations of intraseasonal variability (e.g., Lin et al 2006; Jiang et al37

2015). Many of these errors have been variously attributed to deficiencies in the38

representation of subgrid-scale processes such as cloud microphysics (Kang et al39

2015) and deep convection (Folkins et al 2014).40

In the tropics, rainfall is intimately linked to clouds and convection. In partic-41

ular, cloud regimes derived from passive satellite observations of cloud properties42

(Jakob and Tselioudis 2003; Rossow et al 2005) have been used as proxies for43

various convective states to study rainfall (Lee et al 2013; Tan et al 2013; Rossow44

et al 2013). Amongst the key results from these studies are: the existence of an or-45

ganized convective cloud regime that is associated with exceptionally high rainfall46

and contributes to about half the total tropical rainfall despite a relatively low oc-47

currence (∼5–10%); the existence of other less organized convective regimes with48

a moderate amount of rainfall; and the generally nonprecipitating nature of the49

majority of cloud regimes. In particular, Rossow et al (2013) raises the question50

of how well global climate models are able to capture extreme rainfall when they51

lack a proper representation of organized convection.52

Given the insights that cloud regimes can provide on precipitation, the goal53

of this study is to use similar cloud regimes to evaluate model rainfall and exam-54

ine the rainfall-cloud relationship within 11 global climate models in the Coupled55

Model Intercomparison Project, Phase 5 (CMIP5) database, with the aim of con-56

tributing to an improvement in projections of tropical rainfall. Cloud regimes are57

routinely used in model evaluation due to the growing implementation of satel-58

lite simulators (Klein and Jakob 1999; Bodas-Salcedo et al 2011). Most of these59

studies focus on the representation of clouds, radiation, and climate sensitivity60

in the models (Williams et al 2005; Williams and Tselioudis 2007; Williams and61

Webb 2009; Tsushima et al 2013; Bodas-Salcedo et al 2014; Mason et al 2015; Jin62

et al 2017a,b), while some examined properties associated with particular weather63

systems or atmospheric phenomena (Gordon et al 2005; Chen and Del Genio 2009;64

Bodas-Salcedo et al 2012). A few studies even used cloud regimes to better un-65

derstand the effects of climate change (Williams and Tselioudis 2007; Tsushima66

et al 2016). However, to our knowledge, there have been no studies that evaluated67

the performance of model rainfall through the lens of cloud regimes. As such, this68

study will be the first to dissect errors in model rainfall through simulated cloud69

properties. We will show a general underestimation of rainfall associated with the70

cloud regime that is associated with organized convection in observations, and71
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Fig. 1 Mean joint-histograms (or centroids) of the six ISCCP cloud regimes.

this underestimation can be traced to incorrect rain rates associated with cloud72

properties. We will also show that rainfall errors when specific regimes occur are73

compensated by the errors in their frequencies and geographical distributions.74

2 Data75

2.1 Observations76

The International Satellite Cloud Climatology Project (ISCCP) D1 dataset pro-77

vides joint-histograms of cloud occurrences as a function of cloud top pressure78

(CTP) and optical thickness (τ), constructed from passive retrievals on board a79

network of geostationary and polar-orbiting satellites (Rossow and Schiffer 1999).80

These 7 CTP-bin × 6 τ -bin joint-histograms describe the distribution of cloud81

properties within 280 km × 280 km grids at three-hour intervals during sunlit hours82

from July 1983 to December 2009. Applying a k-means clustering algorithm to83

these joint-histograms objectively categorizes them into different cloud regimes or84

weather states (Jakob and Tselioudis 2003; Rossow et al 2005). We repeated their85

approach over the tropics (±15◦N/S) but with daytime-averaged joint-histograms86

(so that the daily time resolution matches that of the model outputs) and ob-87

tained six cloud regimes (Fig. 1), similar to those of Rossow et al (2005). Each88

daytime-averaged joint-histogram is then assigned to the cloud regime with the89

closest matching pattern; specifically, the daytime-averaged joint-histogram is as-90

signed to the cloud regime that has the lowest Euclidean distance between the91

42-dimensional vector from the 7 × 6 bins of the joint-histogram and the same92

vector corresponding to the cloud regime centroid (Fig. 1). The daily cloud regime93

field is then regridded from the native 280 km equal-area grid to a 2.5◦ equal-angle94

grid using the nearest neighbor technique. The geographical distributions of the95

six cloud regimes are shown in Fig. 2.96

One of the six cloud regimes, CR1, has a mean joint-histogram that describes97

a prevalence of deep convective clouds with widespread stratiform anvil clouds98
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Fig. 2 Geographical distribution of the six ISCCP cloud regimes.

(Fig. 1). The cloud regime generally resides in regions of frequent, vigorous con-99

vection such as in the Intertropical Convergence Zone and the Tropical Western100

Pacific (Fig. 2). Based on its cloud distribution, geographical location, heating101

profile, cloud radiative effect and large-scale environment, CR1 has been identi-102

fied as intense organized convection in previous studies (Jakob and Schumacher103

2008; Oreopoulos and Rossow 2011; Rossow et al 2013; Stachnik et al 2013; Tan104

et al 2013, 2015). The two other convectively-active cloud regimes, CR2 and CR3,105

describe more isolated modes of convection. Other studies have found that they106

have weaker ascending motions and heating profiles (Stachnik et al 2013; Hand-107

los and Back 2014). From its mean joint-histogram, CR2 has a lower population108

of deep convective clouds and a greater population of cirrus clouds, though its109

geographical distribution is broadly similar to CR1. CR2 has been observed to110

co-vary with CR1, suggesting a potential role in the life cycle of large convective111

systems that is often represented by CR1 (e.g., Tromeur and Rossow 2010; Mekon-112

nen and Rossow 2011; Tan et al 2013). CR3, on the other hand, is characterized by113

a variety of lower and thinner clouds, some of which are consistent with cumulus114

congestus clouds. With a greater frequency of occurrence than CR1 or CR2 (Ta-115

ble 1), CR3 occurs in more regions of the tropics especially over land, though over116

areas of orography these “mid-level” clouds1 may be close to the surface and thus117

morphologically different from those over the ocean. CR4, CR5 and CR6 inhabit118

convectively-suppressed environments and represent a thin cirrus regime, trade119

cumulus or fair weather regime, and stratocumulus regime respectively. As we will120

1 Strictly speaking, these are clouds whose tops are located in the mid-level altitudes.
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Table 1 Frequencies of the six cloud regimes in observations (ISCCP) and in the models,
based on the 42-dimensional vector approach.

Dataset CR1 CR2 CR3 CR4 CR5 CR6

ISCCP 0.085 0.116 0.225 0.114 0.391 0.068
all 0.104 0.020 0.190 0.245 0.372 0.069
bcc-csm1-1-m 0.083 0.011 0.230 0.320 0.328 0.028
CanAM4 0.142 0.026 0.107 0.211 0.453 0.061
CCSM4 0.114 0.003 0.241 0.215 0.398 0.029
CNRM-CM5 0.090 0.024 0.139 0.321 0.387 0.039
GFDL-CM3 0.121 0.019 0.103 0.471 0.204 0.083
GISS-E2-R 0.093 0.021 0.181 0.227 0.377 0.103
HadGEM2-A 0.106 0.041 0.183 0.188 0.384 0.098
IPSL-CM5B-LR 0.074 0.027 0.160 0.388 0.329 0.022
MIROC5 0.091 0.000 0.183 0.017 0.483 0.226
MPI-ESM-LR 0.075 0.028 0.096 0.429 0.290 0.082
MRI-CGCM3 0.142 0.040 0.215 0.185 0.368 0.049

see in Sec. 3.1, these three cloud regimes are generally nonprecipitating and thus121

excluded from most of the subsequent analyses.122

For an observationally-based dataset of rainfall, we use the rainfall estimates123

from Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation124

Analysis (TMPA; also known as TRMM 3B42) Research product, Version 7 (Huff-125

man et al 2007). TMPA uses the TRMM Precipitation Radar and TRMM Mi-126

crowave Imager to calibrate and combine high quality estimates from passive mi-127

crowave instruments on board low-Earth-orbit satellites. Gaps in data are filled in128

by lower quality estimates from geosynchronous infrared measurements that are129

calibrated against microwave estimates on a monthly basis. Values over land are130

adjusted with gauges using the monthly gridded product from Global Precipita-131

tion Climatology Centre to control for biases arising from long-term drifts. TMPA132

has a resolution of 0.25◦ at 3-hour intervals, covering up to ±50◦ latitudes with133

data beginning in 1998. The rain rate field is averaged to 2.5◦ and daily resolution.134

Note that the accumulation period is over the full day instead of just over sunlit135

hours. This choice is to be consistent with the model data (Sec. 2.2), even though136

it will result in a discrepancy between the observation time periods of the cloud137

and precipitation data. Nevertheless, using daytime-averaged rain rates does not138

produce substantially different results than using daily-averaged rain rates (see139

Fig. 5 and Fig. S1).140

2.2 Models141

We utilize the models available in the Coupled Model Intercomparison Project,142

Phase 5 (CMIP5) (Taylor et al 2012). As part of the Cloud Feedback Model In-143

tercomparison Project, Phase 2 (Bony et al 2011), many of these models produce144

ISCCP-like joint-histograms (variable clisccp) using the ISCCP satellite simu-145

lator (Klein and Jakob 1999; Bodas-Salcedo et al 2011). These joint-histograms146

differ from those in ISCCP by having 7 bins in τ as opposed to 6, which we re-147

solve by summing the first two τ -bins. This yields a lowest τ -bin of 0–0.3, which148

is arguable close to the 0.02–1.27 in ISCCP than the 0.3–1.3 if we were to discard149

the first τ -bin (see Jin et al 2017a for a detailed discussion). We also use precipi-150
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Table 2 CMIP5 models used in this study. All models are run under the AMIP experiment
setup. We select only one ensemble member from each model.

No. Model Name lat (◦) × lon (◦) Modeling Center
1 bcc-csm1-1-m 1.121 × 1.125 Beijing Climate Center, China Meteoro-

logical Administration
2 CanAM4 2.791 × 2.812 Canadian Centre for Climate Modelling

and Analysis
3 CCSM4 0.942 × 1.250 National Center for Atmospheric Re-

search
4 CNRM-CM5 1.401 × 1.406 Centre National de Recherches

Météorologiques / Centre Européen
de Recherche et Formation Avancée en
Calcul Scientifique

5 GFDL-CM3 2.000 × 2.500 NOAA Geophysical Fluid Dynamics
Laboratory

6 GISS-E2-R 2.000 × 2.500 NASA Goddard Institute for Space Stud-
ies

7 HadGEM2-A 1.250 × 1.875 Met Office Hadley Centre
8 IPSL-CM5B-LR 1.895 × 3.750 Institut Pierre-Simon Laplace
9 MIROC5 1.401 × 1.406 Atmosphere and Ocean Research Insti-

tute (The University of Tokyo), National
Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science
and Technology

10 MPI-ESM-LR 1.865 × 1.875 Max-Planck-Institut für Meteorologie
(Max Planck Institute for Meteorology)

11 MRI-CGCM3 1.121 × 1.125 Meteorological Research Institute

tation flux (variable pr) in the models. Both variables have a daily resolution, but151

precipitation is the average over the full day and the joint-histograms are aver-152

ages over the sunlit hours. We restrict ourselves to the AMIP experiment, which153

uses prescribed sea surface temperatures. After leaving out IPSL-CM5A-LR and154

IPSL-CM5A-MR due to issues with the implementation of the ISCCP simulator155

(J.-L. Dufresne, personal communication, 9th June 2015; see also http://cmip-156

pcmdi.llnl.gov/cmip5/errata/cmip5errata.html), we use a total of 11 models in157

this study (Table 2). We select the ensemble member r1i1p1 for all models except158

for GISS-E2-R and CCSM4, which only have the variable clisccp for ensemble159

member r6i1p1 and r7i1p1 respectively.160

The existence of the ISCCP-like joint-histograms allows us to define cloud161

regimes in the models. Since our goal is to evaluate models against observations,162

we choose to assign model joint-histograms to observed cloud regimes based on163

the Euclidean distance of the vector formed by each model joint-histogram to164

the vector formed by the observed cloud regime centroid. There are two ways165

to construct this vector: (i) we can simply use each of the 7 × 6 bins in the166

joint-histogram to form a 42-dimensional vector; or (ii) we can use a reduced 3-167

dimension vector formed by total cloud cover, mean cloud top pressure and mean168

albedo, which provides greater tolerance to minor errors in histogram binning (e.g.169

Gordon et al 2005; Williams and Webb 2009; Jin et al 2017b). We adopted the170

first approach of the 42-dimensional vectors for the following reason. As we will171

see, CR1 has a rain rate that is significantly higher than other CRs. Consequently,172

it is more important that we are able to capture the statistics of CR1 accurately.173

Table 1 shows that CR1 frequencies across the models are more reasonable in the174
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42-dimensional vector approach as compared to the 3-dimensional vector approach175

(Table S1), which vastly overestimates the occurrence of CR1 for many models.176

Furthermore, the supposed disadvantage of the 42-dimensional vector approach—177

in which a slightly incorrect pixel placed into a neighboring CTP-τ bin is penalized178

as harshly as any other incorrect bin—is actually not so severe because of the179

tendency for cloud distributions to “clump” in the CTP-τ space. Hence, we chose180

to identify model CRs by matching the 42-dimensional vector from the joint-181

histogram to the observed CR centroids. The mean joint-histograms of the model182

CR1, CR2 and CR3 are shown in Fig. 3, and the anomalies in their geographical183

distributions are shown in Fig. 4. In these figures, “all” refers to the aggregate184

data from all models. The other CRs are ignored because of their negligible effect185

on tropical rainfall (as will be discussed in Sec. 3.1).186

In general, CR1 in the models have a predominance of thick and high clouds,187

just as with observations. However, their mean joint-histograms display a greater188

occurrence of thin cirrus clouds, as well as a tendency in some models (e.g. CCSM4189

and GFDL-CM3) to produce clouds that are too high. The models are on aggregate190

able to reproduce the frequencies of CR1, which may be unexpected given that CR1191

largely represents organized convection in observations, while models are known192

to be lacking in a representation of organized convection in their parametrization193

schemes (e.g., Arakawa 2004). For CR2, models produce clouds that are slightly too194

high and thin but still retaining a strong resemblance to observations. However, all195

models severely underestimate the frequency of CR2 (Table 1). On the other hand,196

the mean joint-histograms of model CR3 are more varied, with a high population197

of thin cirrus clouds and, at the same time, mid-level clouds that are considerable198

thicker. On one hand, it is not surprising that clouds in model CR3 are more199

varied than CR1 and CR2; looking at the centroids that model joint-histograms200

were assigned to Fig. 1, CR3 has the highest population of clouds in the center of201

the joint-histogram, so naturally most mid-level clouds in the models would tend202

to fall into CR3. On the other hand, the mean joint-histograms of model CR3203

have a higher occurrence of thicker mid-level clouds, which may be reflecting a204

potential bias in many models. In any case, this shows that model cloud regimes205

may deviate in their patterns from observed cloud regimes, and this will be a206

subject of investigation in Sec. 3.1.207

Just as with observations, we restrict our analysis to the tropics (±15◦ lati-208

tude). We perform our analysis over the period of 2001–2008, which provides us209

with a sufficient sample size for our analysis. In examining the geographical dis-210

tributions, the variables need to be on the same grid, so for these analyses we211

interpolate them onto the 2.5◦ ISCCP grids using the nearest neighbor technique.212

For all other tropics-averaged analyses, we retain the variables in their native grids,213

and select ocean-only points to avoid ISCCP retrieval biases (see Tan et al 2013).214

3 Results215

3.1 Rain rate distributions216

All six observed cloud regimes have different distributions of rain rates (Fig. 5).217

CR1 has the highest rain rates, which generally decline as we progress towards218

CR6. In particular, CR1 has a unique rain rate distribution, with strikingly high219
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Fig. 3 Mean joint-histograms of model CR1, CR2 and CR3, derived through the 42-
dimensional vector approach. “all” refers to the mean of joint-histograms from all models.
The ISCCP mean joint-histograms are included for ease of comparison.

rain occurrence (i.e. nonzero rain rates) and rain rate values. This is consistent220

with previous studies (Lee et al 2013; Tan et al 2013, 2015), which found that CR1221

contributes to about half the total rainfall in the tropics. This intense rainfall222

reflects the fact that CR1 represents organized convection, which is associated223

with intense deep convection and large areas of stratiform rain. The next two224

regimes with the highest rainfall are CR2 and CR3. While their rain rates are not225

as high as CR1, they still have significant occurrences of rain. Both have similar226

distributions, which is perhaps due to the fact that both represent less organized227
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Fig. 4 Anomalies in the geographical distribution of the frequencies of CR1, CR2 and CR3
of the models; i.e. the geographical distribution of model regimes minus the geographical
distribution of observed regimes (Fig. 2). Note that we chose blue to indicate positive anomaly
due to its association with wet conditions.

forms of convection. CR4, CR5, and CR6 are associated with low rain rates and228

have no rain most of the time. These nonprecipitating regimes reside in subsiding229

environments (Tan et al 2013; Handlos and Back 2014) and contribute little to the230

total tropical rainfall despite a comparatively high frequency of occurrence. Due231

to the high impact of CR1 to CR3 on rainfall—which together contribute 85% of232

the total tropical rainfall (Fig. 5)—we will focus on these three convectively-active233

cloud regimes from here on.234

With the observed regime rain rate distribution in mind, we now investigate235

the rain rates from the models. Fig. 6 shows the distributions and statistics from236

observations (left-half of the “violin”) and various models (right-half of the “vio-237

lin”). Note that the left-half of the “violin” (observations) are identical across the238

models and are repeated to facilitate the comparison. The “all” category is based239

on the combined set of values from all models. For CR1 (Fig. 6a), many mod-240

els struggle to reproduce the high rain rates of the observations. Some models,241

such as bcc-csm1-1-m, GISS-E2-R and MRI-CGCM3, have too many incidences242

of no-rain. The distributions of some other models, such as CNRM-CM5, have243

the correct shape but are biased low. However, a few models, such as CCSM4,244

HadGEM2-A and MIROC5, are broadly able to capture both the distribution and245

the statistics of the rain rates in CR1. Interestingly, the high upper-whisker (95th246

percentile) for IPSL-CM5B-LR indicates the presence of more outliers than in ob-247
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(whiskers) of rain rates for each ISCCP cloud regime. Numbers at top show the fractional
contribution to total tropical rainfall.

servations, implying the existence of a long tail in the distribution. This can also248

been seen in bcc-csm1-1-m, though in this case the overall low values suppresses249

the magnitude of the outliers.250

For CR2 and CR3 (Figs. 6b and c), the rain rate distributions of the models251

show varying degrees of fidelity. Just as with CR1, some models, such as bcc-csm1-252

1-m, underestimate the rain rates. However, unlike for CR1, there are models,253

such as IPSL-CM5B-LR and MPI-ESM-LR, that are significantly biased high.254

As for incidences of no-rain, some models overestimate its occurrence (e.g. MRI-255

CGCM3 for CR2 and CR3) while some underestimate it (e.g. MIROC5 for CR2).256

However, because of the overestimation and underestimation of various models,257

the combined values for CR2 and CR3 from all models have distributions and258

statistics that resemble observations.259

While it appears that the rain rates of the three cloud regimes in these 11260

climate models are deficient in a myriad of ways, there is the possibility that261

these errors arose because of a poor identification of model cloud regimes. Re-262

call that model regimes are derived by assigning model joint-histograms to the263

closest centroids of observed regimes—where closest is defined by the lowest Eu-264

clidean distance between the 7 × 6 dimensional vectors formed by the bins of the265

joint-histograms and the observed regime centroid—and this assignment and thus266

the model cloud regimes may not perfectly capture the dominant cloud patterns267

within the models. We investigate whether the rain rate errors in Fig. 6 can be268

attributed to a poor identification of model cloud regimes by selecting the 10% of269

joint-histograms that have the lowest Euclidean distances in the assignment pro-270

cess. That is, these model cloud regimes are the subsets that most resemble their271

observational counterpart (Fig. 1). The mean joint-histograms of these subsets272

are shown in Fig. 7. Overlaying the rain rate distributions of these subsets over273

the original model distributions, we can see a mixed response from these “better”274

cloud regimes (Fig. 8). In some cases, such as CR1 in IPSL-CM5B-LR and CR2275

in GFDL-CM3, the subsets possess rain rate distributions that are closer to ob-276

served values. In some cases, such as CR1 in CNRM-CM5 and CR3 in MIROC5,277

the subset has worse distributions. However, in many cases, there is no discernible278

difference between the subset and the entire population of model regimes. This279
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and CR3 of each model. The left-half of each “violin” corresponds to observations (Fig. 5)
while the right-half shows the distribution from the model CR. Note the difference in scale
between the subplots. See Fig. 5 on interpreting the diagram.

implies that the accuracy of the rain rate distributions of these three regimes in280

the models is unrelated to how well the models represent clouds.281

3.2 Error decomposition282

For the overall rainfall in the tropics, the rain rates of the cloud regimes in the283

previous section are only part of the picture; they describe only how much rain284

falls when a regime occurs in a grid box. How frequent the regimes occur also affect285

the total rainfall. To obtain a better idea of the contributions from various aspects286

of the regimes, we assume that total rainfall can be expressed as the frequency-287

weighted average of regime rain rates, Po =
∑

i fi,o × pi,o, where fi,o and pi,o are288

the frequency and rain rate of CRi for the observations (indicated by the subscript289

‘o’) and likewise for the models. We can then decompose the total rainfall error290

∆P into,291

∆P =
∑
i

(∆fi × pi,o + fi,o ×∆pi +∆fi ×∆pi) , (1)
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where ∆ denotes model minus observations. The three components in Eq. (1)292

represents the contribution due to error in the frequency of the regime (∆f × p),293

the contribution due to error in the rain rate of the regime (f × ∆p), and the294

contribution due to the second-order co-variational error in the frequency and295

rain rate of the regime (∆f ×∆p). These terms, together with the sum of all three296

terms for each model and regime, are shown in Fig. 9.297

We begin first with the contribution from errors in the rain rates (f × ∆p).298

The salient points from the previous section are reflected in Fig. 9: the universal299
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Fig. 8 The distributions in Fig. 6 for observations and the models (gray), overlaid with
distributions from the 10% subset of samples with lowest Euclidean distances on the right-half
(green).

underestimation of CR1 rain rates, as well as positive and negative biases for300

CR2 and CR3 amongst different models with a multimodel mean of near-zero.301

However, as opposed to the “pure” error in rain rates, the contribution to total302

rainfall error is modulated by the frequency of the cloud regime. This is illustrated303

in the case of MIROC5, in which the errors in the median rain rates for CR1 and304

CR2 are of comparable magnitudes (∼ 5 mm / day; Fig. 6), but because CR1305

has a higher frequency in MIROC5 than CR2, its contribution to the total error306

is larger. This demonstrates the point that such error decomposition provides a307

more comprehensive perspective of the overall rainfall error than just the rain rate308

distributions.309

The contribution from errors in the frequencies of the cloud regimes (∆f×p) is310

therefore strongly influenced by how well the model is able to simulate the occur-311

rence of the regimes. Indeed, there is a close correspondence between Fig. 9 and312

Table 1. In particular, CanAM4, CCSM4, GFDL-CM3, HadGEM2-A and MRI-313

CGCM3 all overestimate the frequency of CR1 by a fairly large amount, resulting314

in a large positive contribution to the total rainfall error. However, in the case315

of CanAM4, CCSM4 and GFDL-CM3, this positive contribution is balanced by316
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Fig. 9 Decomposition of the total rainfall error into the contribution from the error in CR
frequency (∆f × p), the contribution from the error in rain rates (f ×∆p), and the cross-term
(∆f ×∆p). The sum of all three errors for each model cloud regime is indicated by the gray
box.

the negative error from the rain rates. In other words, these three models produce317

CR1 too frequently but with too low a rain rate, such that the contribution of er-318

ror from CR1 is small. As for CR2 and CR3, consistent with the underestimation319

of their frequencies in nearly all models, the contributions are nearly all negative.320

The magnitudes of the errors are especially high for CR2, as models appear unable321

to produce these cirrus-dominated regime with sufficient frequency.322

Lastly, the cross-terms (∆f ×∆p) are, with a few exceptions, of lower magni-323

tudes than the other two terms within the same model and CR. This demonstrates324

that the contribution from the second-order co-variation of the errors in frequency325

and rainfall is generally low, though it cannot be ignored in certain cases such as326

CR1 in CanAM4 and CR3 in CNRM-CM5.327

3.3 Geographical distribution of CR1 errors328

The error decomposition of the previous section provides a tropics-averaged anal-329

ysis of the contributions from various aspects of the cloud regimes; further insights330

can be gleaned by examining the geographical distributions of these contributions.331

Here, we focus on CR1 due to its strong but diverse impact on tropical rainfall.332
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Since the contribution from errors in frequency has similar geographical distribu-333

tion to that of the anomalies in regime frequencies themselves, we can use Fig. 4334

as an indication of this contribution. The five models (CanAM4, CCSM4, GFDL-335

CM3, HadGEM2-A and MRI-CGCM3) identified in the previous section with a336

strong positive contribution from CR1 show overestimation of its occurrence in337

most areas in the tropics. More intriguingly, for other models, while the magni-338

tudes of errors from CR1 frequency are low, there are considerable geographical339

variations in the errors. In fact, the low error in CR1 frequency in the tropics for340

these models (and the corresponding low contribution to total rainfall error) is not341

so much because the models are able to simulate CR1 accurately in all regions,342

but because there are compensating errors between different regions. Averaging343

the contributions from CR1 frequency over the tropics masks the biases in different344

geographical regions.345

As for the geographical distributions of the error contributions from the rain346

rates of CR1, Fig. 10 shows a similar conclusion: a low tropics-averaged error is347

due to cancellations from different regions. Models with smaller rain rates errors348

from CR1 in Fig. 9 (HadGEM2-A, IPSL-CM5B-LR, MIROC5 and MPI-ESM-LR)349

also have substantial area in the tropics with a positive contribution. However, the350

regional biases are different across models. For example, an overestimation in the351

eastern Pacific is only present in HadGEM2-A, whereas an overestimation over352

eastern Indian Ocean is only clear in IPSL-CM5B-LR. In contrast, models such as353

CNRM-CM5 and GISS-E2-R, which have a large negative tropics-averaged error,354

show underestimation of CR1 rain rates in almost all regions of the tropics.355

4 Discussion356

4.1 Connection between clouds and precipitation in models357

In Sec. 3.1, we showed that models have varying degrees of success in simulating358

the rain rates of the three convective cloud regimes. Due to the “fuzzy” nature of359

the regime assignment process in models, it was possible that some model regimes360

may include joint-histograms that do not possess the actual physical characteris-361

tics of their regime membership. Indeed, the mean joint-histograms of the model362

regimes (Fig. 3), while displaying broadly similar patterns to observed regime cen-363

troids, exhibited some deviations upon closer examination (e.g. greater proportion364

of clouds in the top-left thin cirrus bin for CR1). However, when restricting the365

evaluation to the subset of joint-histograms that bear the closest resemblance to366

observed centroids, there is no discernible or consistent improvement in the rain367

rates, leading us to conclude that an improved representation of clouds may not368

yield better rain rate distributions.369

Looking at the difference in the mean joint-histograms between the subset370

(Fig. 7) and entire set (Fig. 3), and comparing it to the observed centroids (Fig.371

1), it is clear, as expected, that restricting the model joint-histograms to the best372

matches shifts the cloud pattern towards the observed. For example, in CR1 of373

IPSL-CM5B-LR, there is an appreciable reduction in the overabundance of thin374

cirrus clouds (top-left bin); in CR1 of CNRM-CM5, the entire cloud distribution is375

shifted from overly-thick clouds towards optically-thinner clouds. Yet, the former376

example has improved, higher rain rates while the latter example has worse, lower377
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rain rates. In fact, a consistent result that emerges from this subset analysis is378

a relationship between the rain rate and the height or thickness of the cloud. If379

a joint-histogram has higher or thicker clouds, it will have stronger rain rates380

regardless of the absolute rainfall associated with clouds of a particular height and381

thickness. Therefore, any improvements to the cloud-precipitation relationship in382

the models will need to address the incorrect rain rates associated with each CTP-τ383

bin.384



Rainfall Errors in Model Cloud Regimes 17

4.2 Compensating errors between cloud regimes and regions385

While the rain rate distributions of various cloud regimes are illuminating in terms386

of understanding how well models are able to produce the rainfall associated with387

each weather system, they do not provide the complete picture. As we have shown388

in Sec. 3.2, how often the regimes occur is also a relevant factor in determining389

the total rainfall in the tropics, which is perhaps of greater concern for issues390

such the total water budget in the tropics. Indeed, Fig. 9 illustrates this point391

well: although all models underestimate the rain rates of the intense CR1 (and392

thus suffer a negative error to total rainfall), this is partially offset by a positive393

frequency error in several models. In fact, the error due to underestimating the394

occurrence of CR2 has a greater impact on total rainfall in numerous models (Fig.395

9). It is worth noting that the use of the reduced 3-dimensional vector that is396

common in model evaluation of cloud regimes (e.g. Gordon et al 2005; Williams397

and Webb 2009; Tsushima et al 2013; Jin et al 2017b) does improve the frequency of398

CR2 in the models, though at the expense of an overestimation in CR1 frequency.399

Therefore, both the regime frequency and the regime rain rate must be considered400

for a complete picture of total error in tropical rainfall.401

On top of compensating errors between various regimes as well as between402

regime frequency and rain rate, Sec. 3.3 also identified errors in “well-performing”403

models over different regions in the tropics that cancel out upon spatial averaging.404

As a matter of fact, Figs. 4 and 10 suggest that a low error does not necessarily405

indicate that a model is good at producing the correct regime frequency and rain406

rate, but is often the result of an almost even presence of positive and negative407

biases. The presence of compensating errors may not be surprising, given that408

spatially- and temporally-averaged quantities, such as monthly zonal mean pre-409

cipitation, are probably the main guidance during model development and thus410

likelier to better resemble observations. Hence, analyses involving error decom-411

position and regional breakdown can unmask compensating errors and provide a412

more comprehensive view of the weaknesses in rainfall simulations.413

5 Conclusions414

In this study, we investigated the tropical rainfall in 11 CMIP5 models through415

the lens of cloud regimes. In observations, cloud regimes are categorizations of var-416

ious convective environments based on passive satellite retrievals of cloud proper-417

ties. With the implementation of satellite simulators, we can identify model cloud418

regimes by assigning model clouds to observed regime centroids. We examined419

the rain rate distributions of the three convectively-active cloud regimes in the420

models. We find that many models underestimate the rain rates of CR1, which421

in observations represent organized convection, though a few models were broadly422

able to reproduce the observed rain rate distribution. For CR2 and CR3 which423

represents less organized convective environments, the models have varying per-424

formances with both positive and negative biases such that the ensemble of model425

values appear close to observations. Restricting to cases in which model clouds best426

resemble observed clouds does not necessarily improve the performance, which we427

argue is due to an incorrect rain rate associated with the cloud pixel of each CTP-τ428

combination. To attain a more comprehensive view of these errors on total tropi-429
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cal rainfall, we performed an error decomposition that reflects the contribution of430

regime frequency and regime rain rates to total rainfall errors. Models generally431

have a negative contribution from CR1 rain rates and CR2 frequency, though in432

some cases, particularly for CR1, there are cancellations in the errors between433

frequency and rain rates. Furthermore, an examination of the geographical dis-434

tributions of the errors revealed that a low tropics-averaged error are primarily a435

result of cancellation between positive and negative errors in different regions.436

ISCCP cloud regimes have been regularly employed for the model evaluation437

of clouds and radiation (e.g. Williams et al 2005; Williams and Webb 2009; Bodas-438

Salcedo et al 2014; Mason et al 2015; Tsushima et al 2016; Jin et al 2017a), but439

this is the first time, to our knowledge, that they have been used to study model440

performance on rainfall. By examining model rainfall through cloud regimes, we441

place a stringent demand on models, as a good performance requires the model to442

represent both clouds and rainfall accurately at the same time. Such an approach443

transcends evaluations based on spatially- and temporally-averaged quantities,444

which are the primary guidance during model development. The benefit is a more445

informative categorization of the errors than a simple, straightforward evaluation446

of model rain rates, revealing weather systems that suffer deficiencies in models447

and existence of compensating errors.448

Precipitation has perennially been a challenge in models. In our study, biases449

such as the underestimation of heavy rain (e.g. Stephens et al 2010) manifest in450

the rain rate distributions of CR1. The fact that rain rates do not improve when451

examined for only the best-matching clouds suggest a possible disconnect between452

the resolved variables, which determines the subgrid column profiles that the satel-453

lite simulator relies on, and the surface rainfall in the models, which is jointly a454

result from large-scale and convective (parametrized) precipitation. In particular,455

the lack of a representation for organized convection is an issue widely known to456

the convection community and model developers (e.g. Arakawa 2004; Moncrieff457

et al 2012; Rossow et al 2013; Houze et al 2015). While there is evidence that458

explicit representations of convection, such as through superparametrization or459

convective-permitting simulations, improve the distribution of rainfall (e.g. Mered-460

ith et al 2015; Kooperman et al 2016; Kendon et al 2017), the majority of models461

currently in use, including all in the CMIP5 repository, still employ conventional462

convective parametrizations. Since convection-resolving global climate models are463

still too computationally demanding in the near future, improved representation464

of tropical rainfall will have to come from the development of a better convective465

parametrization scheme.466
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Fig. S1 Mean joint-histograms of model CR1, CR2 and CR3, derived from the 10% of
joint-histograms with the lowest Euclidean distance. The ISCCP mean joint-histograms are
included for ease of comparison.
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Table S1 Frequencies of the six cloud regimes in observations (ISCCP) and in the models,
based on the reduced 3-dimensional vector approach.

Dataset CR1 CR2 CR3 CR4 CR5 CR6

ISCCP 0.081 0.067 0.223 0.100 0.426 0.103
bcc-csm1-1-m 0.158 0.087 0.105 0.183 0.315 0.152
CanAM4 0.154 0.129 0.040 0.144 0.386 0.146
CCSM4 0.211 0.063 0.058 0.146 0.427 0.096
CNRM-CM5 0.202 0.123 0.108 0.146 0.350 0.072
GFDL-CM3 0.134 0.237 0.046 0.224 0.258 0.101
GISS-E2-R 0.108 0.097 0.215 0.138 0.246 0.195
HadGEM2-A 0.076 0.077 0.063 0.176 0.504 0.104
IPSL-CM5B-LR 0.071 0.186 0.026 0.225 0.401 0.091
MIROC5 0.134 0.000 0.199 0.044 0.255 0.368
MPI-ESM-LR 0.083 0.198 0.048 0.239 0.266 0.166
MRI-CGCM3 0.152 0.129 0.058 0.139 0.433 0.090


